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Abstract 

Goal reasoning (GR) is the study of free agents; they can autonomously and dynamically 

deliberate on and select what goals/objectives to pursue (Cox, 2007; Muñoz-Avila et al., 2010; 

Klenk et al., 2013; Vattam et al., 2013; Roberts et al., 2014). Endowing agents with this capability 

is particularly appropriate when the domain in which they operate is complex (e.g., partially 

observable, dynamic, multiagent), preventing the anticipation of all possible states and the precise 

pre-encoding of contingent plans for those states. Most GR agents monitor and assess the current 

state with respect to potential expectation violations or motivation triggers (Coddington et al., 

2005). This deliberation may result in selecting an alternative to the goal(s) currently being 

pursued, requiring a planner to generate a corresponding set of actions for a controller to schedule 

and execute. In this paper, we study domain-independent goal selection, extending a method that 

combines motivations which was implemented in the GR agent M-ARTUE (Wilson et al., 2013). 

In particular, we relax the assumption that all motivations contribute equally to goal selection, and 

investigate the relationship between domain properties and motivator contribution in a 

paradigmatic domain. We view this as a step towards a deeper understanding of how motivations 

affect agent performance. Future work includes automatically learning motivator weights.  

1.  Introduction 

In complex (e.g., partially observable, dynamic, and multiagent) environments, an autonomous 

agent may need to alter its own goals to be successful.  For instance, an agent that flies an 

unmanned aerial vehicle may need to change its goal to refuel or recharge if it encounters 

unexpectedly strong headwinds.  We refer to agents that can deliberatively select their own goals 

as goal reasoning (GR) agents. A crucial problem in GR is that of goal selection (i.e., deciding 

which goal(s) the agent should choose to pursue when it is appropriate to pick a new goal).  One 

possible approach to goal selection is the use of domain-independent motivators, which encode 

high-level drives and rely on the agent’s own internal models, as used by the M-ARTUE GR 

agent (Wilson et al., 2013). We refer to agents that employ such motivators as examples of 

motivated agents. M-ARTUE selects its goals according to a function defined on the following set 

of motivators: 
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 Social Motivator: This chooses user-provided goals.  

 Exploration Motivator: This chooses goals that best expand the agent’s world knowledge. 

 Opportunity Motivator: This chooses goals that that maximize the agent’s opportunity to act 

during plan execution, such as by conserving resources. 

One way for an agent to combine these motivators is for it to assign the same weight to each 

motivator and repeatedly: (1) achieve some of the user’s goals, (2) perform some exploration 

(from time to time), and (3) take action to conserve resources as necessary. However, this strategy 

might not work well in many situations. 

For example, suppose an agent’s user-provided goals involve delivering packages in a graph-

like world where locations are nodes and edges are direct connections between locations with 

associated traversal costs. Suppose also that agents consume gas proportionally to these costs, 

gasoline stations are available in some (but not all) locations, and some information (e.g., some 

connections and the location of some gasoline stations) is initially unknown to the agent. In 

extreme situations, as in the Buridan’s ass paradox,1 the agent might oscillate between the three 

motivators, achieving few of the goals and (literally) running out of gas. Indeed, we hypothesize 

at least three scenarios where the balanced strategy might be inadequate: 

1. Observable Environment: Most of the information is known to the agent. That is, most of the 

connections and gasoline station locations are known. In this case, performing exploration is 

not advisable as resources will be consumed for likely little benefit. Instead the agent should 

follow the social motivation to achieve the maximum number of user-provided goals, and use 

opportunity motivation to conserve resources otherwise. In this case no weight should be 

given to exploration. 

2. Hidden Environment: Most of the information is not known by the agent. That is, the agent 

only knows about a fraction of the connections and gasoline station locations. Then the agent 

should emphasize exploration and place less emphasis on the Social and Opportunity 

Motivators until sufficient information has been gathered to fulfill most or at least many of 

the user-provided goals. 

3. High Resource Capacity: The agent can retain a large quantity of resources that may be spent 

to achieve goals. In this case, it should emphasize the Opportunity Motivator and gather as 

many resources as possible for achieving social goals. 

Figure 1 illustrates these three boundary cases. This raises the question of what kind of weight 

relations will exist among these motivators for the intermediate cases. 

                                                 
1 The Buridan's ass (Rescher, 1959) is a philosophical paradox of an animal that is very thirsty and very 

hungry and can’t decide between drinking from a nearby water fountain and eating from a nearby stack of 
hay that is located in the opposite direction from the fountain. The animal dies of hunger and thirst, never 
able to make a decision. 
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In this paper, we describe preliminary work on strategies for assigning different weights to 

the motivators in an M-ARTUE agent. Specifically, we study the relation between motivator 

weights and agent performance in different contexts, with the future objective of automatically 

learning weight settings that denote the relative, scenario-specific importance of the motivators. 

We present results from an initial investigation on the interaction of certain domain properties 

with the effects of motivator weight mixtures on agent performance. After summarizing related 

work (Section 2) and reviewing the M-ARTUE agent (Section 3), we report on a study (Section 

4) using the Metric Transportation domain, a new variant of the Logistics Transportation domain 

(Veloso, 1994) whose characteristics were outlined above and are detailed further in Section 4. In 

our study, we found support that a motivated agent’s performance varies when its motivators are 

given different weights, and that an agent’s performance varies predictably based on domain and 

problem properties. We conclude and discuss future work in Section 5. 

2.  Related Work 

Standard planning techniques can be used to solve problems in which all state information is 

known (Ghallab et al., 2004). In this situation, the planner can be tasked with achieving all 

package-delivery goals. The planner will attempt to achieve all the goals and backtrack as needed. 

If the planner is complete, it will generate one plan to achieve all of the goals, or indicate that 

such a plan doesn’t exist. This can be interpreted as an instance of the motivators where all 

weight is given to the Social Motivator and no weight is given to the Exploration and the 

Opportunity Motivators. 

Planning research has relaxed this “all-or-none” requirement for achieving the goals. 

Oversubscription planning attempts to find the maximum number of goals that can be achieved 

for a particular problem (Smith, 2004). Techniques such as expanding a planning graph, a 

compact representation of a set of solution plans, to select a subset of the goals to achieve has 

been explored for this purpose (Do et al., 2007). This can also be interpreted as an instance where 

all weight is given to the Social Motivator. 

Figure 1. Boundary Cases for three Motivators 
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Our research is also related to planning for information gathering. In this form of planning, 

the agent navigates a partially observable state. Frequently, the fact that information must be 

gathered is explicitly expressed in a planning language as attached conditions to the actions 

(Draper et al., 1994) or as subgoals (Pryor & Collins, 1996). As a result, plans are generated that 

perform information-gathering tasks. This is akin to giving significant weight to the Exploration 

and Social Motivators in our work. A major difference with our work is that, in planning for 

information gathering, the amount of exploration will depend on the static encoding of the 

symbolic representation of the domain. In contrast, we are interested in the behavior of agents as 

weights for exploration and social activities, along with other behavior, are independently varied. 

Domains such as the Metric Transportation domain have been a focus of optimal planning, 

which is the generation of plans that minimize or maximize some metric such as minimizing 

gasoline use (Williamson & Hanks, 1994). Optimal planning has been subject to extensive 

research (Kuffner, 2004) including using Djikstra-like search procedures that guarantee that the 

optimal solution will not be missed but at a potentially high computational cost of carrying out an 

exhaustive search in the plan space. As a result, optimal algorithms are computationally much 

less efficient than their non-optimal counterparts. Furthermore, partial observability has not been 

studied in the context of plan optimality, whereas in our work it is a central topic. 

Our work is also related to replanning (Stentz, 1995), where a plan is modified as a result of 

changes in the environment. Techniques for replanning include using heuristics to determine the 

best way to complete a plan from the state where the change was detected. Most of the work on 

replanning concentrates on failures (e.g., the plan expected to find gasoline at a location but upon 

arrival it finds none). In contrast, we are considering an Exploration Motivator, which can be 

viewed as “exploring for the sake of exploring” even in situations where the current goals could 

be achieved. Our objective is to develop robust systems in which, for example, even when the 

goals change (e.g., new packages must be picked up and delivered) the system has pro-actively 

gathered information that enables it to react to goal changes. 

Finally, our work is also related to cognitive architectures and goal reasoning agents. Some 

cognitive architectures (Langley et al., 2009) use rules of the form if conditions then goal, which 

trigger the next goals to achieve depending on the current conditions. Here conditions can be 

broadly constructed to include annotations about the world state and actions in the current plan. 

The continuous-concept matching employed by Choi (2011) extends this representation to permit 

arbitration between current goals based on priority values dynamically computed from the degree 

of match offered by a goal’s conditions. This serves a similar role to the fitness functions 

employed by M-ARTUE, but is based on domain-specific rules encoded in the agent’s conceptual 

knowledge, whereas M-ARTUE employs domain-independent motivators. Others, such as 

MADBot (Coddington et al., 2005) or ARTUE (Klenk et al., 2013), represent motivations using 

domain knowledge to encode thresholds or conditions for known variables that the agent can 

observe. Thus, the goal selection knowledge is hard-coded in the rules. In contrast to these efforts, 

motivated agents prioritize goals according to the different motivators. This provides flexibility 

for learning because the relation between goals and goal selection is not hardcoded. Other goal 

reasoning systems such as LGDA (Jaidee et al., 2011) use reinforcement learning (RL) techniques 

to learn goal selection knowledge. Since these systems are guided by a user-defined reward 

function, they can be viewed as achieving social motivations in our parlance. As RL systems they 
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perform exploration and exploitation of the search space, which in this case is goal selection 

knowledge. 

 

3.  The M-ARTUE Agent 

M-ARTUE is an extension of the ARTUE GR agent. ARTUE implements Goal-Driven 

Autonomy (GDA), a GR model extending Nau’s (2007) model of online planning. The GDA 

model is depicted in Figure 2. 

ARTUE is composed of an online Controller, which interacts with a Planner and a State 

Transition System Σ = (𝑆, 𝐴, 𝐹, 𝛾), with possible states 𝑆, actions available to the agent 𝐴, 

exogenous events that may be triggered by the environment 𝐹, and state transition function 𝛾: 𝑆 ×
(𝐴 ∪ 𝐹) → 𝑆. The Planner receives as input the current state 𝑠𝑐, the current goal 𝑔𝑐, and a model 

of the State Transition System 𝑀Σ; it produces as output a sequence of actions 〈𝑎𝑐+1, … , 𝑎𝑐+𝑛〉 
and a corresponding sequence of expectations 〈𝑥𝑐+1, … , 𝑥𝑐+𝑛〉, where 𝑥𝑖 is the state expected to 

follow 𝑎𝑖 during execution.  

As the agent executes a plan returned by the Planner, it performs four GR steps: 

 Notable Event Detection: The agent executes the current plan and compares observed states 

from the environment with the sequence of expected states produced by the Planner. If the 

current observation differs meaningfully from the expected state, the agent notes the 

discrepancy and performs the following steps. 

 Notable Event Explanation: The agent produces an explanation for a given discrepancy, 

where the explanation is frequently an adjustment to the agent’s beliefs that incorporates 

unobserved (but abduced) facts and exogenous events. 

 Goal Formulation: The agent produces a new goal, if necessary, that is deemed an 

appropriate response to a given explanation. 

 Goal Management: The agent selects a goal or goals to pursue from goals that were 

formulated during a current or previous GR sequence. 

M-ARTUE extends ARTUE by performing goal selection (i.e., goal formulation and goal 

management) through the application of motivators. When a notable event is detected and 

Figure 2. The Goal-Driven Autonomy Model implemented by M-ARTUE 
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explained, M-ARTUE evaluates all possible goals for the agent using its motivators and selects 

the goal with the best combined score. Although the goal-driven autonomy model is planner 

agnostic, ARTUE implementations have historically used hierarchical task network (HTN) 

planners. Thus, possible goals for M-ARTUE are enumerated from a list of tasks in an HTN that 

are designated as top-level tasks for the domain. Any grounding of such a task in the current state 

for which a plan can be constructed is considered a possible goal, and M-ARTUE uses the 

constructed plans to evaluate their respective goals. 

3.1  Motivators 

Each motivator calculates an urgency value that indicates how important it is to fulfill its current 

needs. Urgency is defined as a function 𝑢𝑚: 𝑆−> ℝ, which expresses how urgent a particular 

motivator 𝑚’s needs are in the current state 𝑠𝑐 ∈ 𝑆. Each motivator evaluates the fitness of each 

goal 𝑔 for satisfying its domain-independent needs by applying a motivator-specific fitness 

function 𝑓𝑚: 〈𝑥𝑐 , 𝑥𝑐+1, … 𝑥𝑐+𝑛〉 → ℝ to the expectations 𝑥𝑐+1, … 𝑥𝑐+𝑛 generated by the Planner. 

Finally, for each goal, a weighted sum over the motivators is calculated, defined as: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔) = ∑ 𝑢𝑚𝑚 (𝑠𝑐) × 𝑓𝑚(𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑔, 𝑠𝑐)), 

where 𝑔 is a goal and 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑔, 𝑠𝑐) is the list of expectations 𝑋 returned by the Planner 

when given a goal 𝑔 in state 𝑠𝑐. The goal 𝑔 with the highest 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔) is selected. 

3.1.1  Social Motivator 

The Social Motivator captures the need to achieve the user-designated goals. Currently, these are 

represented by a list of state conditions that must be true to satisfy a user-designated goal. The 

Social Motivator’s urgency is a sawtooth function that increases over time until a user-defined 

goal is fulfilled. This function biases goal selection toward social conditions when they have not 

been achieved in some time. It is defined by the function:  

𝑢𝑠𝑜𝑐𝑖𝑎𝑙(𝑠𝑐) = {
𝐶𝑠𝑜𝑐𝑖𝑎𝑙𝑢𝑠𝑜𝑐𝑖𝑎𝑙(𝑠𝑐−1), 𝑖𝑓 𝑅(𝑠𝑐) ≤ 𝑅(𝑠𝑐−1)

0.1, 𝑖𝑓 𝑅(𝑠𝑐) > 𝑅(𝑠𝑐−1)
, 

where 𝑠𝑐 is the state at the time of goal selection, 𝑅(𝑠𝑐) is the percentage of user-provided goals 

that have been satisfied in 𝑠𝑐 or some prior state 𝑠𝑖(𝑖 < 𝑐) visited, and 𝐶𝑠𝑜𝑐𝑖𝑎𝑙 > 1 is a constant of 

social motivation that is tuned to the domain. 

The fitness function for the Social Motivator biases goal selection toward goals that achieve 

the most social conditions with the fewest actions. It is calculated as:  

𝑓𝑠𝑜𝑐𝑖𝑎𝑙(𝑋) = 𝐶𝑠𝑜𝑐𝑖𝑎𝑙−𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑅(𝑥𝑐+𝑛)−𝑅(𝑠𝑐)

𝑛
, 

where 𝑋 is the sequence of expected states as defined above, 𝑛 is the plan’s length, 𝐶𝑠𝑜𝑐𝑖𝑎𝑙−𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

is a constant of social fitness that is tuned to the domain, and 𝑥𝑐+𝑛 is the expected state after the 

plan executes. 
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3.1.2  Exploration Motivator 

The urgency of the Exploration Motivator is biased to increase when the most recent action has 

not visited a new unique state, and to be large when fewer states overall have been visited (i.e., 

exploration is most valued when little to no exploration has been done).  It is defined as: 

𝑢𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑐) = 1 −
𝑉(𝑠0, 𝑠1, … , 𝑠𝑐)

𝑉(𝑠0, 𝑠1, … 𝑠𝑐−1) + 𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛
 , 

where 𝑉(𝑆) is the number of distinct states in a list 𝑆 and 𝐶𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is a constant of exploration 

that is tuned to the domain. 

The fitness function biases goal selection toward goals that visit the most new unique states 

per action. This function is defined as: 

𝑓𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑋) =  
𝑉(𝑠0,𝑠1,…𝑠𝑐,𝑥𝑐+1,𝑥𝑐+2,…𝑥𝑐+𝑛)− 𝑉(𝑠0,𝑠1,…𝑠𝑐)

𝑛
. 

3.1.3  Opportunity Motivator 

The Opportunity Motivator tries to maximize the agent’s opportunity to act throughout plan 

execution, thus helping the agent to prepare to fulfill future goals. This is evaluated in terms of 

two factors: (1) the branching factor in a given state and (2) the availability of resources relative 

to their historical averages. These factors are combined to determine this motivator’s urgency, 

which biases selection toward opportunity-increasing goals when the agent cannot execute as 

many actions or it does not possess as many resources as have been available historically. This 

function is defined as: 

𝑢𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑠𝑐) =  [(1 − 𝑁(𝑠𝑐)

𝑚𝑎𝑥
0≤𝑖<𝑐

𝑁(𝑠𝑖)
) + (1 − 𝐿(𝑠𝑐))] 2⁄ , 

where 𝑁(𝑠) is the number of available actions, and 𝐿(𝑠) is the level of resources relative to 

historical resource levels. A domain defines a set of 𝑘 resources, each of which has a state-based 

level 𝑣𝑟(𝑠). Function 𝐿(𝑠) is defined in terms of these levels as 𝐿(𝑠𝑐) = (∑ [𝑣𝑟(𝑠𝑐) 𝑎𝑟(𝑠𝑐)⁄ ])/𝑘
𝑟=1

𝑘, where 𝑎𝑟(𝑠𝑐) =
∑ 𝑣𝑟(𝑠𝑖)𝑐−1

𝑖=1

𝑐−1
 is the mean of all prior values for 𝑣𝑟(𝑠). 

The Opportunity Motivator’s fitness function biases goal selection toward goals that have the 

most actions available per expected state, and leaves the agent with the most resources and 

actions available when the goal is achieved. This function is defined as:  

𝑓𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑋) =
([∑ 𝑁(𝑥𝑐+𝑗)𝑛−1

𝑗=0  ]+ [𝑤×𝑁(𝑥𝑐+𝑛)] )

(𝑛+𝑤)𝑁(𝑠𝑐)
 + 𝐿(𝑥𝑐+𝑛) − 𝐿(𝑠𝑐) − 1, 

where 𝑤1. 

4.  Experiments and Discussion 

We performed experiments to evaluate two hypotheses: 

 H0: Varying motivator weights will affect agent performance. 
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 H1: Agent performance will vary with motivator weights in a predictable fashion as certain 

properties of the evaluation scenario change. Specifically, the scenario properties we 

investigated are: 

o Initial observability: When observability is low, we expect the number of goals achieved 

to be greater when the relative weight of the Exploration Motivator increases, 

encouraging the agent to observe more about its environment. Conversely, when 

observability is high we expect the number of goals achieved to be greater when the 

relative weight of the Social Motivator increases. 

o Resource capacity: When the agent has greater resource capacity, we expect the number 

of goals achieved to increase as the relative weight of the Opportunity Motivator 

increases, encouraging the agent to gather as many resources as possible. Conversely, 

when resource capacity is low, we expect the number of goals achieved to be greater 

when the relative weight of the Social Motivator increases. 

To test these hypotheses, we ran M-ARTUE on scenarios from the Metric Transportation 

domain, a modified version of the Logistics Transportation domain. In this domain, an agent is 

given an initial set of goals by a user, who directs it to deliver a specified set of packages to a set 

of discrete destinations, which are located (as nodes) in a partially-connected graph. To achieve 

these goals, the agent uses trucks and airplanes to move packages. Our modified domain omits 

airports and airplanes, but includes a fuel function on trucks (i.e., a given truck’s current fuel 

level), which decreases as the truck moves between connected locations according to a cost 

function defined on the connections. Additionally, our modifications permit the scenario author to 

initially hide some connections between locations, some gas stations, and some packages’ 

locations. M-ARTUE discovers these hidden facts through the occurrence of observation events 

when a truck moves to a relevant location (i.e., one of the connected locations, a gas station’s 

location, or a package’s location, respectively). To guide M-ARTUE’s goal selection and HTN 

planner, we created an HTN definition encompassing top-level tasks that allow the agent to 

deliver a package to a particular location, drive a truck to a particular location, refuel a truck, or 

do nothing. 

We randomly generate scenarios in this domain according to parameters controlling: the size 

of the graph; the number of trucks, packages, and gas stations; the amount of fuel available to the 

trucks initially and after fueling at stations; and the connectedness of the graph. These parameters 

control the difficulty of the agent’s planning problems. We also individually specify percentages 

of connections, packages, and gas stations that will be visible to the agent initially. These 

parameters impact the difficulty of the agent’s goal-achievement problem. To evaluate the agent’s 

performance, we use as a metric the fraction of total user goals achieved (i.e., the number of 

packages successfully delivered to their destinations).  
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4.1  Motivator Weights and Agent Performance 

To test hypothesis H0, we generated several scenarios with the same parameters.  Specifically, for 

this test we adopted the scenario parameters 𝑛𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 20, 𝑛𝑡𝑟𝑢𝑐𝑘𝑠 = 3, 𝑛𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 = 3, 

𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = 3, and 𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 3, with all packages and gas stations initially visible to the 

agent, and 70% of edges initially known to the agent. We generated 25 scenarios using these 

values. In each scenario, we evaluated the agent’s performance at different weight mixtures 

corresponding to combinations that sum to 1 of the values (0, 0.2, 0.4, 0.6, 0.8, 1) for all 

motivators. We limited the test to 500 actions on each scenario-weight pair. (Since the agent can 

continue indefinitely, we chose 500 actions to provide a reasonable tradeoff of running time and 

goal achievement.)  The average fraction of user goals accomplished at each weight mixture is 

shown in Figure 3. 

Visually, the agent performs best in a region dominated by non-zero values of the Social 

Motivator. Additionally, the agent’s performance is better when the Exploration Motivator is 

weighted more heavily than the Opportunity Motivator, indicating that exploration may improve 

agent performance by revealing even a few hidden environmental features (connections between 

locations, in this case). (Occasionally, the agent may deliver a package simply by trying different 

exploratory actions, even when the Social Motivator has no weight, as can be seen by the slight 

improvement in performance at the Exploration Motivator’s corner.) An analysis of variance on 

the average agent performance indicates that the performance differs significantly across the 

range of weights (𝑝 < 5 × 10−8 for all components), supporting hypothesis H0. 

4.2  Motivator Weights and Scenario Properties 

To test hypothesis H1, we altered the 25 scenarios described in Section 4.1 to provide contrast in 

the desired scenario properties. 

Figure 3. Average fraction of user goals achieved with high initial observability across 25 

trials (maximum 500 actions) at indicated weight-mixture points 
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 Observability: We compared the original scenarios with modified versions that initially 

revealed none of the packages, gas stations, or connections, except those relevant to the 

trucks’ starting locations. 

 Resource capacity: We altered the scenarios to provide complete observability of the graph 

(to avoid any impact the Exploration Motivator might have on resource consumption by 

revealing shorter routes). We then compared these completely-observable scenarios using the 

original resource levels with modified versions that provide higher initial fuel levels and fuel 

capacity (95 and 150, compared to 25 and 40, respectively). 

For each alteration to the scenarios, we evaluated the agent as in Section 4.1, using the same 

weight-mixture points and limiting the agent to 500 actions. We then compared the motivators’ 

contributions to agent performance under the differing scenario properties by fitting a canonical 

linear mixture model, 𝑦 = ∑𝛽𝑖𝑥𝑖, to the data for the original scenarios and the alterations. The 

results were as follows:  

 Observability: Figure 4 depicts the motivator coefficients 𝛽𝑖 in the linear fit model. These 

values indicate how strongly each motivator is correlated with agent performance in the 25 

scenarios for the original high-observability scenarios and the matching low-observability 

scenarios. In the high-observability scenarios, the Social Motivator correlates most strongly 

with agent performance. By contrast, the Exploration Motivator correlates most strongly with 

agent performance in the low-observability scenarios, supporting our hypothesis that the 

importance of exploration increases (i.e., the agent achieves more goals when the Exploration 

Motivator is heavily weighted) when the environment exhibits low initial observability, as the 

agent cannot achieve user goals without discovering routes and gas stations, and the need to 

discover those features outweighs the need to conserve resources. In fact, in this extreme 

scenario, conserving resources contributed nothing to agent performance. The smaller 

numerical values of the coefficients in the low-observability scenarios are due to lower 

overall agent performance, as the environment is more challenging. (Note that, while the 

linear fit was significant for all three components in the high observability scenarios, it was 

not significant for the Opportunity Motivator in the low observability scenarios, supporting 

the conclusion that the Opportunity Motivator was not a significant contributor to agent 

performance in those experiments.) 

(a) Scenarios with high observability (b) Scenarios with low observability 

Figure 4. Coefficients of motivator weight for agent performance 
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 Resource capacity: Figure 5 depicts the motivator coefficients 𝛽𝑖 in the linear fit model.  

These values indicate motivator correlation with agent performance in the 25 high-resource 

scenarios and the matching low-resource scenarios. While the Social Motivator is the 

dominant contributing motivator to agent performance in all scenarios, the Opportunity 

Motivator contributes much more to agent performance in the high-capacity scenarios than in 

the low-capacity scenarios, supporting our hypothesis that the importance of resource 

acquisition increases as a function of the agent’s ability to gather and retain more resources to 

assist in achieving goals. (The linear fit was significant for all components in these 

experiments.) 

5.  Conclusion and Future Work 

The paradox of Buridan’s ass exemplifies the need to balance between an agent’s motivations. 

We reviewed a GR agent (M-ARTUE) that reasons with Social, Exploration, and Opportunity 

motivators to deliberate among goal choices. We introduced the Metric Transportation Domain to 

test the motivators’ value in scenarios with varying properties, and showed that (1) varying the 

motivators’ relative weights can impact agent performance and (2) the relative importance of each 

motivator is context-dependent.  

In future work we will investigate the impact of motivator weight settings in other domains 

(e.g., an underwater vehicle domain and a Mars rover domain). We will also investigate the 

effects of the motivator weight settings in other extreme scenarios (e.g., when resource 

consumption is extremely low or resource availability is extremely high). We will use the results 

of these investigations to identify further predictable domain and problem characteristics that 

affect motivators’ correlation with agent performance, and we will pursue the creation of a more 

formal model of domain and problem characteristics and their interaction with motivator weights. 

We will also investigate the effect of motivator weights using alternative metrics of agent 

performance (e.g., how quickly user goals are achieved and how many resources the agent 

expends while achieving them). We will investigate the use of other motivators (e.g., a directed 

information motivator). Finally, we will investigate how an agent can learn weight settings that 

(a) Scenarios with high resource capacity (b) Scenarios with low resource capacity 

Figure 5. Coefficients of motivator weight for agent performance 
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will enable it to outperform its behavior using fixed equal weights. We will do so using fixed 

environmental conditions, as we used for these experiments (e.g., resource capacity is static 

throughout an experiment), and environments in which these conditions may change dynamically.  
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